Weaning in Ventilator Dependent SCI patients

Daily assessments for weaning should be performed (regardless of presence of tracheostomy) Assessments include clinical assessment and respiratory/ventilator parameters Concerns on clinical exam alone are sufficient to NOT attempt weaning Success of weaning is highly dependent on ASIA classification (ie. complete vs incomplete) and level of injury¹:

C1 \rightarrow 15% C2 \rightarrow 28% (not necessarily during initial hospitalization) C3 \rightarrow 60% C4 \rightarrow 85%

Is patient ready to be weaned?

Clinical assessment:

- Wakefulness
 - Eyes open, tracking, interacting with nods / eye blinking / other non-verbal cues
 - Not in active substance withdrawal
 - Not encephalopathic for other reasons
- Secretions
 - Absolute contraindication: suctioning frequency < 2hrs
 - o Relative contraindication: suctioning frequency every 2-4hrs.
 - Non-purulent
- Imaging
 - Atelectasis not present
 - Infiltrates sub-lobar
 - Pulmonary edema not present

Parameters

- Intra-pulmonary
 - Intact gas exchange²
 - P/F ratio > 300
 - PEEP 5 or less
 - Appropriate lung compliance^{3–5}
 - Static lung compliance (Cstat) = $V_T / (P_{plat} PEEP)$
 - Normal is > 80-100 ml / cmH2O
 - Values < 50 predict weaning failure
- Global
 - o Rapid shallow breathing index (RSBI)⁶
 - Defined as Tv / RR on PSV 8 or less
 - <100 predicts successful weaning</p>

Relative contraindication: 100-120

Absolute contraindication: >120

Negative Inspiratory Force (NIF)⁷

Absolute contraindication: <30</p>

Relative contraindication: <40</p>

Forced Vital Capacity (FVC)

Absolute contraindication: <10ml/kg

■ Relative contraindication: <15ml/kg

Global considerations

- If VAP present, advise waiting >48hrs from initiation of treatment
- C-collar removal may facilitate weaning (ie. delay weaning until after surgical stabilization if anticipating collar removal)
- If pre-existing lung disease, consider pulmonology consult for optimization prior to weaning
- C-spine injuries above C5 level have low likelihood of successful weaning without tracheostomy⁸

How is the patient weaned?

Weaning procedure9

- Optimize breathing
 - Adequately prepare pt psychologically and address potential anxiety issues related to weaning
 - Aspirate respiratory secretions
 - Reposition into supine or Trendelenburg position
 - Administer bronchodilators
 - Measure baseline NIF and VC
- Progressive ventilator-free breathing (PVFB)¹⁰
 - Utilize tracheostomy collar (or T-tube if no tracheostomy)
 - Increase FiO2 by 10% from baseline during weaning
 - o Initial VFB should be 15-30 minutes bid
 - Rest at least 4 hrs between VFB sessions
 - Measure VC q 15min during initial sessions, and place back on ventilator if VC decreases by more than 25%
 - Space VC measurements out to q30 min once pt tolerating more than 1hr of VFB
 - Once pt tolerating more than 2hrs of VFB, interval between sessions can be decreased to 2-3hrs.
 - Once pt tolerating 6hrs of VFB bid, intervals can be combined to a single 10-12hr session
 - o Lengthening VFB should not occur unless VC and NIF maintained or increased

 Pace of weaning individualized based on pt fatigue (as assessed by decline in VC during VFB.

References

- 1. Wicks AB, Menter RR. Long-term outlook in quadriplegic patients with initial ventilator dependency. *Chest*. 1986;90(3):406-410. doi:10.1378/CHEST.90.3.406
- 2. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. *JAMA*. 2012;307(23):2526-2533. doi:10.1001/JAMA.2012.5669
- 3. Okabe Y, Asaga T, Bekku S, et al. Lung-thorax compliance measured during a spontaneous breathing trial is a good index of extubation failure in the surgical intensive care unit: A retrospective cohort study. *J Intensive Care*. 2018;6(1):1-9. doi:10.1186/S40560-018-0313-9/TABLES/5
- 4. Abplanalp L, Nair Gb, Ayala Ec, Yu L. Static lung compliance as a predictor of extubation failure in non-covid-19 patients with acute respiratory failure. *Chest*. 2021;160(4):A1095. doi:10.1016/J.CHEST.2021.07.1009
- 5. Johnson JL, Haenel JB. Mechanical Ventilation. *Abernathy's Surgical Secrets*. Published online January 1, 2009:39-45. doi:10.1016/B978-0-323-05711-0.00006-9
- 6. Yang KL, Tobin MJ, Presberg KW. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. *N Engl J Med*. 1991;324(21):53. doi:10.1056/NEJM199105233242101
- 7. Chiodo AE, Scelza W, Forchheimer M. ORIGINAL CONTRIBUTION Predictors of Ventilator Weaning in Individuals With High Cervical Spinal Cord Injury. *J Spinal Cord Med*. 2008;31:72-77.
- 8. Branco BC, Plurad D, Green DJ, et al. Incidence and clinical predictors for tracheostomy after cervical spinal cord injury: a National Trauma Databank review. *J Trauma*. 2011;70(1):111-115. doi:10.1097/TA.0B013E3181D9A559
- 9. Galeiras Vázquez R, Rascado Sedes P, Mourelo Fariña M, Montoto Marqués A, Ferreiro Velasco ME. Respiratory Management in the Patient with Spinal Cord Injury. *Biomed Res Int*. 2013;2013:12. doi:10.1155/2013/168757
- 10. Wallbom AS, Naran B, Thomas E. Acute Ventilator Management and Weaning in Individuals with High Tetraplegia. *Top Spinal Cord Inj Rehabil*. 2005;10(3):1-7. doi:10.1310/K4Y4-YDXQ-9VNY-F562